Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Piotr Kuśa ${ }^{\text {a }}$ and Peter G. Jones ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.094$
Data-to-parameter ratio $=25.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

1,6,7-Tris(bromomethyl)naphthalene

The title compound, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}_{3}$, has a planar framework of C atoms with no distortion towards helicity. The two adjacent bromine substituents point to opposite sides of the ring system. Two bromine-bromine contacts, with distances less than twice the van der Waals radius, link the molecules to form ribbons parallel to the a axis. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and partial ring stacking complete the crystal packing.

Comment

The title compound, (I), was synthesized as a potential precursor to naphthalenophanes (see, for example, Kuś \& Jones, 2000).

The molecular structure of (I) is presented in Fig. 1. Bond lengths and angles may be regarded as normal. The naphthalene framework is planar (r.m.s. deviation $0.004 \AA$ for all 11 C atoms); the level of substitution is thus not great enough to promote helicity, in contrast to the octakis-substituted analogue (Siman et al., 2003). The $\mathrm{C}-\mathrm{Br}$ groups are approximately perpendicular to the ring system (torsion angles in Table 1), with atoms Br 1 and Br 2 on one side of the plane, Br 3 on the other.

The crystal packing involves two main types of interaction, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions. Details of the H bonds are given in Table 2; none of the $\mathrm{H} \cdots \mathrm{Br}$ distances is especially short, and two have narrow angles $\left(<120^{\circ}\right)$ at hydrogen. The $\mathrm{Br} \cdots \mathrm{Br}$ contacts, $\mathrm{Br} 1 \cdots \mathrm{Br}^{\mathrm{v}}$ 3.6974 (8) and $\mathrm{Br} 2 \cdots \mathrm{Br}^{\mathrm{vi}} 3.5591$ (6) \AA [symmetry codes: (v) $-x, 2-y, 1-z$; (vi) $-1+x, y, z]$ may be compared with twice the van der Waals radius, $3.7 \AA$ (Bondi, 1964). There is also a longer contact $\mathrm{Br} 1 \cdots \mathrm{Br} 3^{\mathrm{i}}$ of 3.9048 (6) \AA. The first two contacts are established as 'type II' and the third as 'type I', in the classification of Pedireddi et al. (1994), by the angles at bromine: $155.30(10)^{\circ}(\times 2$, by symmetry), 156.59 (10) and $147.56(9)^{\circ}$, and 84.90 (10) and $142.03(9)^{\circ}$, respectively.

The effect of the two shortest $\mathrm{Br} \cdots \mathrm{Br}$ contacts is to link the molecules to form highly corrugated ribbons (Fig. 2), with overall direction parallel to the a axis. The hydrogen bonds (not shown) then link the ribbons in the c direction to establish the final three-dimensional packing, which also involves partial stacking (incomplete overlap in projection) of the ring systems.

Experimental

The title material was synthesized from 1,6,7-trimethylnaphthalene (Ried \& Bodem, 1958) and recrystallized from ethanol/dichloromethane ($1: 2 \mathrm{v} / \mathrm{v}$). ${ }^{1} \mathrm{H}$ NMR data ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS, p.p.m.): δ $4.87(s, 2 \mathrm{H}), 4.91(s, 2 \mathrm{H}), 4.92(s, 2 \mathrm{H}), 7.43(t, 1 \mathrm{H}), 7.55(d, 1 \mathrm{H}), 7.79$ $(d, 1 \mathrm{H}), 7.89(s, 1 \mathrm{H})$ and $8.14(s, 1 \mathrm{H})$.

Crystal data

$D_{x}=2.109 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{Br}_{3}$
$M_{r}=406.95$
Monoclinic, $P 2_{d} / c$
$a=7.7316(6) \AA$
$b=9.3716(8) \AA$
$c=17.7245(14) \AA$
$\beta=93.835(3)^{\circ}$
$V=1281.40(18) \AA^{3}$
$Z=4$
$M_{r}=406.95$
Monoclinic, $P 2_{\mathrm{d}} / c$
$b=9.3716$ (8) \AA
$c=17.7245(14) \AA$
$V=1281.40(18) \AA^{3}$
$Z=4$

Data collection

Bruker SMART 1000 CCD
diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.199, T_{\text {max }}=0.471$
23006 measured reflections
Mo $K \alpha$ radiation
Cell parameters from 7411
reflections
$\theta=2.4-30.5^{\circ}$
$\mu=9.41 \mathrm{~mm}^{-1}$
$T=133$ (2) K
Tablet, colourless
$0.18 \times 0.16 \times 0.08 \mathrm{~mm}$

3737 independent reflections
2842 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.092$
$\theta_{\text {max }}=30.0^{\circ}$
$h=-10 \rightarrow 10$
$k=-13 \rightarrow 12$
$l=-24 \rightarrow 24$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.094$
$S=0.97$
3737 reflections
145 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0518 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.56 \mathrm{e}^{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\min }=-0.69 \mathrm{e}^{\circ} \AA^{-3}$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 11$	$1.971(3)$	$\mathrm{Br} 3-\mathrm{C} 13$	$1.986(3)$
$\mathrm{Br} 2-\mathrm{C} 12$	$1.979(3)$		
$\mathrm{C} 1-\mathrm{C} 11-\mathrm{Br} 1$	$110.9(2)$	$\mathrm{C} 7-\mathrm{C} 13-\mathrm{Br} 3$	$111.6(2)$
$\mathrm{C} 6-\mathrm{C} 12-\mathrm{Br} 2$	$112.5(2)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 11-\mathrm{Br} 1$	$93.4(3)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 13-\mathrm{Br} 3$	$75.4(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 12-\mathrm{Br} 2$	$72.9(4)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{Br}^{\mathrm{i}}$	0.95	3.11	$4.013(3)$	160
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{Br}^{\mathrm{ii}}$	0.99	3.02	$3.908(3)$	150
$\mathrm{C}^{\mathrm{i}} 3-\mathrm{H} 13 B \cdots \mathrm{Br}^{\text {iii }}$	0.99	3.11	$3.643(3)$	115
${\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{Br}^{\text {iv }}}^{2}$	0.99	3.09	$3.672(3)$	119

Symmetry codes: (i) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (iii) $-x, \frac{1}{2}+y, \frac{3}{2}-z$; (iv) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.

H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of 0.95 ($s p^{2}$ carbon) or $0.99 \AA$ (methylene). $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atom. The largest maximum is $0.93 \AA$ from Br 2 ; all maxima $>1 \mathrm{e}^{\AA^{-3}}$ are within $1 \AA$ of Br atoms.

Figure 1
The molecule of the title compound in the crystal. Displacement ellipsoids are drawn at the 50% probability level. The H -atom radius is arbitrary.

Figure 2

Packing diagram of the title compound, viewed perpendicular to the $a b$ plane. $\mathrm{Br} \cdots \mathrm{Br}$ interactions are indicated by dashed lines. H atoms have been omitted.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS
(Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Kuś, P. \& Jones, P. G. (2000). Pol. J. Chem. 74, 649-657.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Ried, W. \& Bodem, H. (1958). Chem. Ber. 91, 1981-1982.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siman, S., Marks, V., Gottlieb, H. E., Stranger, A. \& Biali, S. E. (2003). J. Org. Chem. 68, 637-640.

